Application of a low impedance contactless conductometric detector for the determination of inorganic cations in capillary monolithic column chromatography

Talanta. 2011 Mar 15;84(1):42-8. doi: 10.1016/j.talanta.2010.12.010. Epub 2010 Dec 14.

Abstract

Poly(glycidyl methacrylate) cation exchange monolithic column was prepared in fused-silica capillaries of 320 μm i.d. by thermally initiated radical polymerization and utilized in capillary ion chromatography. With 15 mM methanesulfonic acid as the mobile phase, the separations of a mixture of inorganic cations (Li(+), Na(+), NH(4)(+), K(+)) was tested by using a capacitively coupled contactless conductivity detector (C(4)D) and a low impedance C(4)D (LIC(4)D). The LIC(4)D is the series combination of a C(4)D and a quartz crystal resonator. At the resonant frequency of the series combination, the capacitor impedance from capillary wall was offset by the inductance impedance from the quartz crystal resonator. A minimum impedance was obtained in the impedance-frequency curve of the combination. The responses of the C(4)D and LIC(4)D were analyzed based on an equivalent circuit model. It was shown that the sensitivity of the C(4)D to the change in analyte concentration is rather poor due to the high ratio of the impedance from the capillary wall capacitor to the solution impedance. The LIC(4)D has the similar sensitivity as a contact conductivity detector but a much smaller cell volume. The on-column detection model was realized by LiC(4)D without preparation of optical detection window in monolithic column.

Publication types

  • Research Support, Non-U.S. Gov't