Imaging colon cancer response following treatment with AZD1152: a preclinical analysis of [18F]fluoro-2-deoxyglucose and 3'-deoxy-3'-[18F]fluorothymidine imaging

Clin Cancer Res. 2011 Mar 1;17(5):1099-110. doi: 10.1158/1078-0432.CCR-10-1430. Epub 2011 Jan 18.

Abstract

Purpose: To determine whether treatment response to the Aurora B kinase inhibitor, AZD1152, could be monitored early in the course of therapy by noninvasive [(18)F]-labeled fluoro-2-deoxyglucose, [(18)F]FDG, and/or 3'-deoxy-3'-[(18)F]fluorothymidine, [(18)F]FLT, PET imaging.

Experimental design: AZD1152-treated and control HCT116 and SW620 xenograft-bearing animals were monitored for tumor size and by [(18)F]FDG, and [(18)F]FLT PET imaging. Additional studies assessed the endogenous and exogenous contributions of thymidine synthesis in the two cell lines.

Results: Both xenografts showed a significant volume-reduction to AZD1152. In contrast, [(18)F]FDG uptake did not demonstrate a treatment response. [(18)F]FLT uptake decreased to less than 20% of control values in AZD1152-treated HCT116 xenografts, whereas [(18)F]FLT uptake was near background levels in both treated and untreated SW620 xenografts. The EC(50) for AZD1152-HQPA was approximately 10 nmol/L in both SW620 and HCT116 cells; in contrast, SW620 cells were much more sensitive to methotrexate (MTX) and 5-Fluorouracil (5FU) than HCT116 cells. Immunoblot analysis demonstrated marginally lower expression of thymidine kinase in SW620 compared with HCT116 cells. The aforementioned results suggest that SW620 xenografts have a higher dependency on the de novo pathway of thymidine utilization than HCT116 xenografts.

Conclusions: AZD1152 treatment showed antitumor efficacy in both colon cancer xenografts. Although [(18)F]FDG PET was inadequate in monitoring treatment response, [(18)F]FLT PET was very effective in monitoring response in HCT116 xenografts, but not in SW620 xenografts. These observations suggest that de novo thymidine synthesis could be a limitation and confounding factor for [(18)F]FLT PET imaging and quantification of tumor proliferation, and this may apply to some clinical studies as well.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / therapeutic use
  • Cell Line, Tumor
  • Colonic Neoplasms / diagnostic imaging*
  • Colonic Neoplasms / drug therapy
  • Dideoxynucleosides*
  • Fluorine Radioisotopes
  • Fluorodeoxyglucose F18*
  • Fluorouracil / therapeutic use
  • HCT116 Cells
  • Humans
  • Immunoblotting
  • Ki-67 Antigen / analysis
  • Methotrexate / therapeutic use
  • Mice
  • Mice, Nude
  • Organophosphates / therapeutic use*
  • Positron-Emission Tomography / methods*
  • Quinazolines / therapeutic use*
  • Radiopharmaceuticals
  • Thymidine / biosynthesis
  • Thymidine Kinase / genetics
  • Xenograft Model Antitumor Assays

Substances

  • 2-((3-((4-((5-(2-((3-fluorophenyl)amino)-2-oxoethyl)-1H-pyrazol-3-yl)amino)quinazolin-7-yl)oxy)propyl)(ethyl)amino)ethyl dihydrogen phosphate
  • Antineoplastic Agents
  • Dideoxynucleosides
  • Fluorine Radioisotopes
  • Ki-67 Antigen
  • Organophosphates
  • Quinazolines
  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18
  • Thymidine Kinase
  • alovudine
  • Fluorouracil
  • Thymidine
  • Methotrexate