Purpose: To determine whether treatment response to the Aurora B kinase inhibitor, AZD1152, could be monitored early in the course of therapy by noninvasive [(18)F]-labeled fluoro-2-deoxyglucose, [(18)F]FDG, and/or 3'-deoxy-3'-[(18)F]fluorothymidine, [(18)F]FLT, PET imaging.
Experimental design: AZD1152-treated and control HCT116 and SW620 xenograft-bearing animals were monitored for tumor size and by [(18)F]FDG, and [(18)F]FLT PET imaging. Additional studies assessed the endogenous and exogenous contributions of thymidine synthesis in the two cell lines.
Results: Both xenografts showed a significant volume-reduction to AZD1152. In contrast, [(18)F]FDG uptake did not demonstrate a treatment response. [(18)F]FLT uptake decreased to less than 20% of control values in AZD1152-treated HCT116 xenografts, whereas [(18)F]FLT uptake was near background levels in both treated and untreated SW620 xenografts. The EC(50) for AZD1152-HQPA was approximately 10 nmol/L in both SW620 and HCT116 cells; in contrast, SW620 cells were much more sensitive to methotrexate (MTX) and 5-Fluorouracil (5FU) than HCT116 cells. Immunoblot analysis demonstrated marginally lower expression of thymidine kinase in SW620 compared with HCT116 cells. The aforementioned results suggest that SW620 xenografts have a higher dependency on the de novo pathway of thymidine utilization than HCT116 xenografts.
Conclusions: AZD1152 treatment showed antitumor efficacy in both colon cancer xenografts. Although [(18)F]FDG PET was inadequate in monitoring treatment response, [(18)F]FLT PET was very effective in monitoring response in HCT116 xenografts, but not in SW620 xenografts. These observations suggest that de novo thymidine synthesis could be a limitation and confounding factor for [(18)F]FLT PET imaging and quantification of tumor proliferation, and this may apply to some clinical studies as well.
©2011 AACR.