We report on the fabrication and performance of polymer-based inverted solar cells utilizing amorphous indium zinc oxide (a-IZO) as the electron-collecting electrode. Amorphous IZO films of 200 nm thickness were deposited by room temperature sputtering in a high-purity argon atmosphere. The films possessed a high optical transmittance in the visible region (≥ 80%), a low resistivity (3.3 × 10⁻⁴ Ωcm), a low surface roughness (root mean square = 0.68 nm), and a low work function (4.46 ± 0.02 eV). Inverted solar cells with the structure a-IZO/P3HT: PCBM/PEDOT:PSS/Ag exhibited a power conversion efficiency of 3% estimated for AM 1.5G, 100 mW/cm² illumination.