Backgrounds & aims: Saturated free fatty acids induce hepatocyte lipoapoptosis, a key pathologic feature of non-alcoholic steatohepatitis. The saturated free fatty acid palmitate induces hepatocyte lipoapoptosis via an endoplasmic reticulum stress pathway resulting in c-Jun-N-terminal (JNK) activation. Glycogen synthase kinase (GSK)-3 is a serine/threonine kinase which may also promote JNK activation. Thus, our aim was to determine if GSK-3 inhibition suppresses palmitate induced JNK activation and lipoapoptosis.
Methods: For these studies, we employed mouse primary hepatocytes, Huh-7 and Hep3B cell lines.
Results: Palmitate-induced GSK-3 activation was identified by phosphorylation of its substrate glycogen synthase. GSK-3 pharmacologic inhibition, by GSK-3 inhibitor IX and enzastaurin, significantly reduced PA-mediated lipoapoptosis. More importantly, Huh-7 cells, in which either GSK-3α or GSK-3β isoforms were stably and selectively knocked down by shRNA, displayed resistance to palmitate-induced cytotoxicity. GSK-3 pharmacological inhibitors and shRNA-targeted knockdown of GSK-3α or GSK-3β also suppressed JNK activation by palmitate. JNK activation, in part, promotes lipoapotosis by inducing expression of the pro-apoptotic effector p53-upregulated modulator of apoptosis (PUMA). Consistent with this concept, GSK-3 pharmacologic inhibition also reduced PUMA cellular protein levels during exposure to palmitate. On the other hand, the GSK-3 inhibitors did not prevent PA induction of ER stress.
Conclusions: Our results suggest that GSK-3 activation promotes a JNK-dependent cytotoxic signaling cascade culminating in lipoapoptosis.
Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.