Introduction: The identification of key pathways dysregulated in non-small cell lung cancer (NSCLC) is an important step toward understanding lung pathogenesis and developing new therapeutic approaches.
Methods: Toward this goal, reverse-phase protein lysate arrays (RPPA) were used to compare signaling pathways between NSCLC tumors and paired normal lung tissue from 46 patients and assess their association with clinical outcome.
Results: After RPPA quantification of 63 proteins and phosphoproteins, tissue pairs were randomized to a training set (n = 25 pairs) and test set (n = 21 pairs). In the training set, 15 protein markers were differentially expressed between tumors and normal lung (p ≤ 0.01), including markers in the PI3K/AKT and p38 MAPK signaling pathways (e.g., p70S6K, S6, p38, and phospho-p38), as well as caveolin-1 and β-catenin. A four-protein signature (p70S6K, cyclin B1, pSrc(Y527), and caveolin-1) independent of histology classified specimens as tumor versus normal with a predicted accuracy of 83%, sensitivity of 67%, and specificity of 100%. The signature was validated in the test set, correctly classifying all normal tissues and 14 of 21 tumor tissues. RPPA results were confirmed by immunohistochemistry for caveolin-1 and p70S6K. In tumors from patients with resected NSCLC, expression of proteins in the energy-sensing AMPK pathway (pLKB1, AMPK, p-Acetyl-CoA, pTSC2), adhesion, EGFR, and Rb signaling pathways was inversely associated with NSCLC recurrence.
Conclusions: These data provide evidence for dysregulation of several pathways including those involving energy sensing and adhesion that are potentially associated with NSCLC pathogenesis and disease recurrence.