Evaluation of ceftazidime and NXL104 in two murine models of infection due to KPC-producing Klebsiella pneumoniae

Antimicrob Agents Chemother. 2011 Jan;55(1):82-5. doi: 10.1128/AAC.01198-10. Epub 2010 Nov 1.

Abstract

We evaluated the efficacy of NXL104, a novel β-lactamase inhibitor, in combination with ceftazidime (CAZ) in two murine infection models (septicemia and thigh infection). We chose two KPC-producing Klebsiella pneumoniae strains (VA-361 and VA-406) showing MICs of CAZ of ≥256 μg/ml. Septicemia was induced by the intraperitoneal injection of KPC-producing K. pneumoniae followed 30 min later by a single subcutaneous treatment with CAZ alone or CAZ-NXL104 in ratios of 2:1, 4:1, 8:1, and 16:1. In this model, the median effective doses for 50% (ED(50)) of the animals for CAZ alone versus VA-361 and VA-406 were 1,578 and 709 mg/kg of body weight, respectively. When combined with NXL104 at 2:1, 4:1, 8:1, and 16:1 ratios, the CAZ ED(50)s for VA-361 and VA-406 were reduced to 8.1 and 3.5 mg/kg, 15.1 and 3.8 mg/kg, 16.9 and 7.2 mg/kg, and 29.5 and 12.1 mg/kg, respectively. For thigh infection, neutropenia was induced by the intraperitoneal injection of cyclophosphamide at days -4 and -1 preinfection. Infection was established by the intramuscular injection of KPC-producing K. pneumoniae into the right thigh. Mice were treated 1.5 h postinfection with either CAZ alone or CAZ-NXL104 at constant ratios of 4:1. When thighs were removed at 24 h postinfection, a >2-log CFU reduction was observed for mice treated with CAZ-NXL104 at doses of ≥128:32 mg/kg. In contrast, CAZ doses of ≥1,024 mg/kg were unable to reduce the numbers of CFU. Despite resistance to CAZ and possessing a complex β-lactamase background, NXL104 combined with CAZ proved to be very effective in murine models of infection due to contemporary highly resistant KPC-producing K. pneumoniae isolates.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / therapeutic use*
  • Azabicyclo Compounds / therapeutic use*
  • Ceftazidime / therapeutic use*
  • Disease Models, Animal
  • Female
  • Klebsiella Infections / drug therapy*
  • Klebsiella pneumoniae / physiology*
  • Mice
  • Microbial Sensitivity Tests
  • Sepsis / drug therapy

Substances

  • Anti-Bacterial Agents
  • Azabicyclo Compounds
  • avibactam
  • Ceftazidime