Manual gating of bivariate plots remains the most frequently used data analysis method in flow cytometry. However, gating is operator-dependent and cumbersome, particularly with the increasing complexity of modern multicolor immunophenotyping data. A method that can remove operator bias, enable systematic and thorough analysis of complex high-dimensional data, correlate temporal changes in different subsets and lead to biomarker discovery is needed. Here we apply such a method, called cytometric fingerprinting (CF), to data obtained on peripheral blood B cells from an adult patient with type-1 diabetes who underwent pancreatic islet transplantation. We establish that CF can be used to analyze longitudinal trends in immunophenotypic data, and show that results from CF are comparable to those obtained with traditional gating methods. Both methods reveal the appearance of transitional B cells and subsequent accumulation of more mature B cells following immunosuppression and transplantation. This pattern is consistent with a temporally ordered process of B cell auto-reconstitution. We also show the comparative efficiency of fingerprinting in recognizing relative changes in B cell subsets with respect to time, its ability to couple the data with statistical methods (agglomerative clustering) and its potential to define novel subsets.
Copyright © 2010 Elsevier B.V. All rights reserved.