Designing colloidal ground-state patterns using short-range isotropic interactions

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021404. doi: 10.1103/PhysRevE.82.021404. Epub 2010 Aug 23.

Abstract

DNA-coated colloids are a popular model system for self-assembly through tunable interactions. The DNA-encoded linkages between particles theoretically allow for very high specificity, but generally no directionality or long-range interactions. We introduce a two-dimensional lattice model for particles of many different types with short-range isotropic interactions that are pairwise specific. For this class of models, of which the DNA-coated colloids are one example, we address the fundamental question whether it is possible to reliably design the interactions so that the ground state is unique and corresponds to a given crystal structure. First, we determine lower limits for the interaction range between particles, depending on the complexity of the desired pattern and the underlying lattice. Then, we introduce a proof-of-principle "recipe" for determining the pairwise interactions that exactly satisfies this minimum criterion, and we show that it is sufficient to uniquely determine the ground state for a large class of crystal structures. Finally, we verify these results using Monte Carlo simulations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anisotropy
  • Colloids / chemistry*
  • Computer Simulation
  • DNA / chemistry*
  • DNA / ultrastructure*
  • Models, Chemical*
  • Models, Molecular*
  • Particle Size

Substances

  • Colloids
  • DNA