Multiparametric magnetic resonance imaging, spectroscopy and multinuclear (²³Na) imaging monitoring of preoperative chemotherapy for locally advanced breast cancer

Acad Radiol. 2010 Dec;17(12):1477-85. doi: 10.1016/j.acra.2010.07.009. Epub 2010 Sep 21.

Abstract

Rationale and objectives: The aim of this prospective study was to investigate using multiparametric and multinuclear magnetic resonance imaging during preoperative systemic therapy for locally advanced breast cancer.

Materials and methods: Women with operable stage 2 or 3 breast cancer who received preoperative systemic therapy were studied using dynamic contrast-enhanced magnetic resonance imaging, magnetic resonance spectroscopy, and ²³Na magnetic resonance. Quantitative metrics of choline peak signal-to-noise ratio, total tissue sodium concentration, tumor volumes, and Response Evaluation Criteria in Solid Tumors were determined and compared to final pathologic results using receiver-operating characteristic analysis. Hormonal markers were investigated. Statistical significance was set at P < .05.

Results: Eighteen eligible women were studied. Fifteen responded to therapy, four (22%) with pathologic complete response and 11 (61%) with pathologic partial response. Three patients (17%) had no response. Among estrogen receptor-positive, HER2-positive, and triple-negative phenotypes, observed frequencies of pathologic complete response, pathologic partial response, and no response were 2, 5, and 0; 1, 4, and 0; and 1, 1, and 3, respectively. Responders (pathologic complete response and pathologic partial response) had the largest reductions in choline signal-to-noise ratio (35%, from 7.2 ± 2.3 to 4.6 ± 2; P < .01) compared to nonresponders (11%, from 8.4 ± 2.7 to 7.5 ± 3.6; P = .13) after the first cycle. Total tissue sodium concentration significantly decreased in responders (27%, from 66 ± 18 to 48.4 ± 8 mmol/L; P = .01), while there was little change in nonresponders (51.7 ± 7.6 to 56.5 ± 1.6 mmol/L; P = .50). Lesion volume decreased in responders (40%, from 78 ± 78 to 46 ± 51 mm³; P = .01) and nonresponders (21%, from 100 ± 104 to 79.2 ± 87 mm³; P = .23) after the first cycle. The largest reduction in Response Evaluation Criteria in Solid Tumors occurred after the first treatment in responders (18%, from 24.5 ± 20 to 20.2 ± 18 mm; P = .01), with a slight decrease in tumor diameter noted in nonresponders (17%, from 23 ± 19 to 19.2 ± 19.1 mm; P = .80).

Conclusions: Multiparametric and multinuclear imaging parameters were significantly reduced after the first cycle of preoperative systemic therapy in responders, specifically, choline signal-to-noise ratio and sodium. These new surrogate radiologic biomarkers maybe able to predict and provide a platform for potential adaptive therapy in patients.

Publication types

  • Clinical Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Antineoplastic Combined Chemotherapy Protocols*
  • Breast Neoplasms / diagnostic imaging*
  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / surgery
  • Female
  • Humans
  • Magnetic Resonance Imaging*
  • Middle Aged
  • Neoplasm Staging
  • Prospective Studies
  • Radiography
  • Sodium

Substances

  • Sodium