Nitrosation reactions of malononitrile by three nitrosating agents, HONO, ClNO, and N(2)O(3), have been theoretically investigated at the B3LYP/cc-pVTZ and MP2/cc-pVDZ levels. Two possible competitive paths for nitrosation of malononitrile to give 2-nitroso-malononitrile were proposed: (a) direct C-nitrosation and (b) N-nitrosation and subsequent nitroso transfer from N to C atom. The calculations show that at both B3LYP and MP2 levels, path b is kinetically favored over path a for nitrosations by HONO and N(2)O(3). In the case of ClNO, the B3LYP predicts preference of path b, while the MP2 calculations suggest that both paths have similar rate-determining barriers. The data suggest that N(2)O(3) is the preferred nitrosating agent for the nitrosation of malononitrile in aqueous solution. Transformation of 2-nitroso-malononitrile to form malononitrileoxime via intramolecular proton transfer has also been explored, and it is found that inclusion of an assistant water molecule can drastically accelerate the tautomerization.