Background: Gastric adenocarcinoma is a leading cause of cancer mortality. The role of dopamine and cAMP regulated phosphoprotein MW 32 kDa (DARPP-32) overexpression in the gastric tumorigenesis cascade remains unclear.
Methods: The expression of DARPP-32 in the multistep carcinogenesis cascade was examined using immunohistochemistry analysis on 533 samples. The contribution of DARPP-32 in cellular transformation and molecular signaling was investigated using NIH3T3, AGS, and SNU16 cells.
Results: The composite expression score (CES), calculated from immunostaining patterns, increased significantly from normal or gastritis to metaplasia, dysplasia, and adenocarcinoma (P < .001). In patients with normal stomach or gastritis and tumor samples, a 76% and 77% chance, respectively, was found (P < .001) that CES was higher in the tumor. High median CES correlated with well- or moderately differentiated (P = .03) gastric adenocarcinomas. NIH3T3 cells transfected with DARPP-32 demonstrated increased levels of phospho-AKT and a 5-fold increase in the number of foci as compared with the control (P = .02). DARPP-32 expression in AGS cells led to increased protein levels of phospho-AKT and BCL-2. For validation, the knockdown of endogenous DARPP-32 expression in SNU16 cells using shRNA resulted in decreased levels of phospho-AKT phosphorylation and BCL-2.
Conclusion: Our results suggest that DARPP-32 overexpression may participate in the transition to intestinal metaplasia and in the progression to neoplasia. The ability of DARPP-32 to transform NIH3T3 cells and to regulate AKT and BCL-2 underscores its possible oncogenic potential.
Copyright 2010 Mosby, Inc. All rights reserved.