Recently, we discovered on primary cell cultures that adenylyl cyclase type 8 (AC8) was involved in the transition of rat vascular smooth muscle cells (VSMCs) to an inflammatory phenotype. Here we demonstrate, in human vessels displaying early or advanced atherosclerotic lesions, that: (a) only intimal VSMCs strongly express AC8; and (b) very few AC8-positive VSMCs were detected in the medial layer, either in atherosclerotic or healthy arteries. Furthermore, over-expressing AC8 in primary rat VSMC cultures triggered the recolonization of a wounded zone and similar results were obtained in the presence of mitomycin, a potent inhibitor of proliferation. This phenomenon was prevented by silencing AC8. Indeed, in IL-1 beta-treated cells, AC8 silencing halted migration and decreased the matrix-metalloproteinases 2/9 secretion, known to be involved in VSMC migration. In vivo, we showed: (a) a pronounced up-regulation of AC8 expression in highly migrating VSMCs of the injured rat carotid artery; (b) an undetectable AC8 labelling in re-endothelized vessels where neo-intimal thickening had stopped. From our data, we conclude that AC8 expression appears closely linked to the properties developed by VSMCs in atherosclerosis and post-angioplasty neo-intima formation leading to restenosis. In addition, it reinforces the idea that VSMC responses to their cell environment greatly depend on the AC isoforms expressed and attributes a new role for AC8 in these pathological vascular processes.
(c) 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.