Objectives: To determine which serotonergic system-related single nucleotide polymorphisms (SNPs) predicted variation in treatment response to citalopram in depression following a traumatic brain injury (TBI).
Methods: Ninety (50 M/40 F, aged 39.9, SD = 18.0 years) post-TBI patients with a major depressive episode (MDE) were recruited into a 6-week open-label study of citalopram (20 mg/day). Six functional SNPs in genes related to the serotonergic system were examined: serotonin transporter (5HTTLPR including rs25531), 5HT1A C-(1019)G and 5HT2A T-(102)C, methylene tetrahydrofolate reductase (MTHFR) C-(677)T, brain-derived neurotrophic factor (BDNF) val66met and tryptophan hydroxylase-2 (TPH2) G-(703)T. Regression analyses were performed using the six SNPs as independent variables: Model 1 with response (percentage Hamilton Depression (HAMD) change from baseline to endpoint) as the dependent variable and Model 2 with adverse event index as the dependent variable (Bonferroni corrected p-value < 0.025).
Results: MTHFR and BDNF SNPs predicted greater treatment response (R(2)= 0.098, F = 4.65, p = 0.013). The 5HTTLPR predicted greater occurrence of adverse events (R(2)= 0.069, F = 5.72, p = 0.020).
Conclusion: Results suggest that polymorphisms in genes related to the serotonergic system may help predict short-term response to citalopram and tolerability to the medication in patients with MDE following a TBI.