Over the last 15 years classical culturing and environmental PCR techniques have revealed a modest number of genuinely new major lineages of protists; however, some new groups have greatly influenced our understanding of eukaryote evolution. We used culturing techniques to examine the diversity of free-living protists that are relatives of diplomonads and retortamonads, a group of evolutionary and parasitological importance. Until recently, a single organism, Carpediemonas membranifera, was the only representative of this region of the tree. We report 18 new isolates of Carpediemonas-like organisms (CLOs) from anoxic marine sediments. Only one is a previously cultured species. Eleven isolates are conspecific and were classified within a new genus, Kipferlia n. gen. The remaining isolates include representatives of three other lineages that likely represent additional undescribed genera (at least). Small-subunit ribosomal RNA gene phylogenies show that CLOs form a cloud of six major clades basal to the diplomonad-retortamonad grouping (i.e. each of the six CLO clades is potentially as phylogenetically distinct as diplomonads and retortamonads). CLOs will be valuable for tracing the evolution of diplomonad cellular features, for example, their extremely reduced mitochondrial organelles. It is striking that the majority of CLO diversity was undetected by previous light microscopy surveys and environmental PCR studies, even though they inhabit a commonly sampled environment. There is no reason to assume this is a unique situation - it is likely that undersampling at the level of major lineages is still widespread for protists.
© 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.