The pandemic virus of 2009 (2009 H1N1) continues to cause illness worldwide, especially in younger age groups. The widespread H1N1 virus infection further emphasizes the need for vaccine strategies that are effective against emerging pandemic viruses and are not dependent on the limitations of traditional egg-based technology. This report describes a recombinant influenza virus-like particle (VLP) vaccine consisting of hemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins of influenza A/California/04/2009 (H1N1) virus. Influenza H1N1 VLPs with a diameter of approximately 120nm were released into the culture medium from Sf9 insect cells infected with recombinant baculovirus coexpressing HA, NA, and M1 proteins. Purified recombinant H1N1 VLPs morphologically resembled influenza virions and exhibited biological characteristics of influenza virus, including HA and NA activities. In the ferret challenge model, 2009 influenza H1N1 VLPs elicited high-titer serum hemagglutination inhibition (HI) antibodies specific for the 2009 H1N1 virus and inhibited replication of the influenza virus in the upper and lower respiratory tract tissues following A/Mexico/4482/09 (H1N1) virus challenge. Moreover, a single 15mug dose of H1N1 VLPs resulted in complete virus clearance in the ferret lung. These results provide support for the use of recombinant influenza VLP vaccine as an effective strategy against pandemic H1N1 virus.
Copyright 2010 Elsevier Ltd. All rights reserved.