MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines

J Biol Chem. 2010 Mar 12;285(11):7986-94. doi: 10.1074/jbc.M109.062877. Epub 2010 Jan 14.

Abstract

Recently, microRNAs have emerged as regulators of cancer metastasis through acting on multiple signaling pathways involved in metastasis. In this study, we have analyzed the level of miR-10b and cell motility and invasiveness in several human esophageal squamous cell carcinoma cell lines. Our results reveal a significant correlation of miR-10b level with cell motility and invasiveness. Overexpression of miR-10b in KYSE140 cells increased cell motility and invasiveness, whereas inhibition of miR-10b in EC9706 cells reduced cell invasiveness, although it did not alter cell motility. Additionally, we identified KLF4, a known tumor suppressor gene that has been reported to suppress esophageal cancer cell migration and invasion, as a direct target of miR-10b. Furthermore, overexpression of miR-10b in KYSE140 and KYSE450 cells led to a reduction of endogenous KLF4 protein, whereas silencing of miR-10b in EC9706 cells caused up-regulation of KLF4 protein. Coexpression of miR-10b and KLF4 in KYSE140 cells and coexpression of small interfering RNA for KLF4 mRNA and miR-10b-AS in EC9706 cells partially abrogated the effect of miR-10b on cell migration and invasion. Finally, analyses of the miR-10b level in 40 human esophageal cancer samples and their paired normal adjacent tissues revealed an elevated expression of miR-10b in 95% (38 of 40) of cancer tissues, although no significant correlation of the miR-10b level with clinical metastasis status was observed in these samples.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3' Untranslated Regions / genetics
  • Biopsy
  • Carcinoma, Squamous Cell / genetics*
  • Carcinoma, Squamous Cell / secondary*
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Esophageal Neoplasms / genetics*
  • Esophageal Neoplasms / pathology*
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors / genetics*
  • Kruppel-Like Transcription Factors / metabolism
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • Neoplasm Invasiveness / genetics
  • RNA, Messenger / genetics
  • RNA, Small Interfering
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • 3' Untranslated Regions
  • KLF4 protein, human
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors
  • MIRN10 microRNA, human
  • MicroRNAs
  • RNA, Messenger
  • RNA, Small Interfering