Treatment of human immunodeficiency virus (HIV) infection involves a combination of several antiviral agents belonging to different pharmacological classes. This combination is referred to as highly active antiretroviral therapy (HAART). This treatment has proved to be very effective in suppressing HIV replication, but antiretroviral drugs have complex pharmacokinetic properties involving extensive drug metabolism and transport by membrane-associated drug carriers. Combination drug therapy often introduces complex drug-drug interactions that can result in toxic or sub-therapeutic drug concentrations, compromising treatment. This review focuses on the role of ATP-binding cassette (ABC) membrane-associated efflux transporters and solute carrier (SLC) uptake transporters in antiretroviral drug disposition, and identifies clinically important antiretroviral drug-drug interactions associated with changes in drug transport.
2009 Elsevier Ltd. All rights reserved.