The basic metrics of hypermetabolism have not been thoroughly characterized in rat burn injury models. We examined three models expected to differ in sensitivity to burn injury to identify that which group(s) exhibited the most clinically relevant metabolic response. Six and 12 weeks old male CD (6 week mCD and 12 week mCD) rats, and 12 weeks old female Fischer (12 week fFI) rats received a 20% total body surface area burn, followed by saline resuscitation. Activity, core body temperature, heart rate (via implanted telemetry devices), body weight, food and water intake, and fecal output were measured daily for 1 week before and after burn. Rats lost weight initially postburn but resumed weight gain by 1 week, except for 12 week mCD rats. Core body temperature increased above normal 2 days postburn and returned to baseline by 1 week. Food intake, normalized to body weight, remained unchanged postburn for 12 week mCD rats, but decreased in 6 week mCD rats and increased in 12 week fFI rats. Heart rate in the 12 week mCD and 12 week fFI rats remained at 10 to 15% above baseline, whereas, in 6 week mCD, heart rates returned to baseline after 4 days. Activity levels were unchanged for 12 week fFI and 6 week mCD rats postburn, but decreased for 12 week mCD rats. Postburn hypermetabolism was most significant and sustained in 12 week mCD rats, of least consequence and brief in 6 week mCD rats, and intermediate in 12 week fFI rats. The disparate responses indicate that the choice of animal model should be carefully considered in hypermetabolism studies.