HO-1 expression increases mesenchymal stem cell-derived osteoblasts but decreases adipocyte lineage

Bone. 2010 Jan;46(1):236-43. doi: 10.1016/j.bone.2009.10.012. Epub 2009 Oct 21.

Abstract

Human bone marrow mesenchymal stem cells (MSC) are pleiotropic cells that differentiate to either adipocytes or osteoblasts as a result of cross-talk by specific signaling pathways including heme oxygenase (HO)-1/-2 expression. We examined the effect of inducers of HO-1 expression and inhibitors of HO activity on MSC differentiation to the osteoblast and adipocyte lineage. HO-1 expression is increased during osteoblast stem cell development but remains elevated at 25 days. The increase in HO-1 levels precedes an increase in alkaline phosphatase (AP) activity and an increase in BMP, osteonectin and RUNX-2 mRNA. Induction of HO-1 by osteogenic growth peptide (OGP) was associated with an increase in BMP-2 and osteonectin. Exposure of MSC to high glucose levels decreased osteocalcin and osteogenic protein expression, which was reversed by upregulation of the OGP-mediated increase in HO-1 expression. The glucose-mediated decrease in HO-1 resulted in decreased levels of pAMPK, pAKT and the eNOS signaling pathway and was reversed by OGP. In contrast, MSC-derived adipocytes were increased by glucose. HO-1 siRNA decreased HO-1 expression but increased adipocyte stem cell differentiation and the adipogenesis marker, PPARgamma. Thus, upregulation of HO-1 expression shifts the balance of MSC differentiation in favor of the osteoblast lineage. In contrast, a decrease in HO-1 or exposure to glucose drives the MSC towards adipogenesis. Thus, targeting HO-1 expression is a portal to increased osteoblast stem cell differentiation and to the attenuation of osteoporosis by the promotion of bone formation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipocytes / cytology*
  • Adipocytes / drug effects
  • Adipocytes / metabolism
  • Cells, Cultured
  • Enzyme-Linked Immunosorbent Assay
  • Gene Expression Regulation
  • Glucose / pharmacology
  • Heme Oxygenase-1 / antagonists & inhibitors
  • Heme Oxygenase-1 / genetics
  • Heme Oxygenase-1 / metabolism*
  • Histones / pharmacology
  • Humans
  • Intercellular Signaling Peptides and Proteins / pharmacology
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / drug effects
  • Mesenchymal Stem Cells / metabolism
  • Osteoblasts / cytology*
  • Osteoblasts / drug effects
  • Osteoblasts / metabolism
  • Osteocalcin / metabolism
  • Osteoprotegerin / metabolism
  • PPAR gamma / metabolism
  • Polymerase Chain Reaction
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / physiology

Substances

  • Histones
  • Intercellular Signaling Peptides and Proteins
  • Osteoprotegerin
  • PPAR gamma
  • RNA, Small Interfering
  • Osteocalcin
  • osteogenic growth peptide
  • Heme Oxygenase-1
  • Glucose