Background: Non-enzymatic glycation is a process, which leads to the formation of advanced glycation endproducts. These compounds are involved in the development of diabetic microvascular complications. Fructosamine-3-kinase (FN3K) is an intracellular enzyme that phosphorylates fructosamines resulting in fructosamine-3-phosphate, which subsequently decomposes to inorganic phosphate, 3-deoxyglucasone and the unmodified amine. Recently, the G900C (rs1056534) single nucleotide polymorpism (SNP) of the FN3K gene was found to be associated with the enzyme activity.
Objective/design: The aim of the study was to investigate the impact of the SNP on clinical and biochemical features and microvascular complications of type 2 diabetes.
Patients: A total of 859 type 2 diabetic subjects and 265 healthy controls were enrolled in the study and were genotyped with PCR-RFLP method.
Results: Genotype frequencies were as follows, CC: 5%, GC: 54%, GG: 41% in subjects with type 2 diabetes and CC: 6%, GC: 51%, GG: 43% in the controls. Diabetic subjects with the CC variant had lower HbA (1c) levels compared with the others (CC: 6.48+/-0.05%; GC: 7.66+/-0.09%; GG: 7.68+/-0.09%; p<0.001). Furthermore, in case of the CC allelic variant type 2 diabetes was diagnosed at a later age than in case of GC or GG variants (CC: 56.0+/-1.90 years; GC: 52.0+/-0.62 years; GG: 50.1+/-0.71 years; p<0.05). Logistic regression analysis did not reveal association between CC genotype and diabetic complications, such as diabetic nephropathy, neuropathy and retinopathy (OR=1.036, CI 95% 0.652-1.647, p=0.880; OR=0.985, CI 95% 0.564-1.721 p=0.958; OR=1.213, CI 95% 0.470-3.132, p=0.690, respectively).
Conclusion: We conclude that the G900C polymorphism associates with the level of HbA (1c) and the onset of the disease, but not with either of the diabetic microvascular complications.
J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart * New York.