The pathogenesis of HBsAg (+)/HBsAb (+) double positive hepatitis B virus infection was investigated by simulating HBsAg/HBsAb coexistence in vitro and establishing HBsAg/HBsAb double positive model in vivo. Eukaryotic expression plasmids PCI-SY, PCI-adw, PCI-adr, PCI-ayw, which expressed S gene product of different serotypes, were constructed and transfected into HepG2 cells. Recombinant proteins were purified from the transfected cells. At the same time, HBsAg mouse antiserum was obtained by immunizing mice with PCI-SY plasmid. HBsAg/HBsAb coexistence was simulated using these antigens and antiserum. Furthermore, the expression plasmids expressing different serotypes of S gene product including PCI-adw, PCI-adr, and PCI-ayw were injected into mice via tail vein. HBsAg and HBsAb in mice sera were tested at the first and 7th day respectively after antigen plasmids injection. Both in vitro simulation and in vivo animal models demonstrated that HBsAg antigen and HBsAb of the same serotypes could not coexist, but HBsAg antigen and HBsAb of different serotype could coexist. HBsAg/HBsAb double positive hepatitis B virus infection could be due to infection of viruses of different serotypes.