Discovery and validation of colonic tumor-associated proteins via metabolic labeling and stable isotopic dilution

Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17235-40. doi: 10.1073/pnas.0909282106. Epub 2009 Sep 23.

Abstract

The unique biology of a neoplasm is reflected by its distinct molecular profile compared with normal tissue. To understand tumor development better, we have undertaken a quantitative proteomic search for abnormally expressed proteins in colonic tumors from Apc(Min/+) (Min) mice. By raising pairs of Min and wild-type mice on diets derived from natural-abundance or (15)N-labeled algae, we used metabolic labeling to compare protein levels in colonic tumor versus normal tissue. Because metabolic labeling allows internal control throughout sample preparation and analysis, technical error is minimized as compared with in vitro labeling. Several proteins displayed altered expression, and a subset was validated via stable isotopic dilution using synthetic peptide standards. We also compared gene and protein expression among tumor and nontumor tissue, revealing limited correlation. This divergence was especially pronounced for species showing biological change, highlighting the complementary perspectives provided by transcriptomics and proteomics. Our work demonstrates the power of metabolic labeling combined with stable isotopic dilution as an integrated strategy for the identification and validation of differentially expressed proteins using rodent models of human disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Validation Study

MeSH terms

  • Adenomatous Polyposis Coli / genetics
  • Adenomatous Polyposis Coli / metabolism
  • Adenomatous Polyposis Coli / pathology
  • Adenomatous Polyposis Coli Protein / genetics
  • Animals
  • Chromatography, Liquid
  • Colonic Neoplasms / genetics
  • Colonic Neoplasms / metabolism*
  • Colonic Neoplasms / pathology
  • Diet
  • Disease Models, Animal
  • Female
  • Gene Expression Profiling / methods
  • Humans
  • Isotope Labeling / methods*
  • Linear Models
  • Mice
  • Mice, Inbred C57BL
  • Mutation
  • Neoplasm Proteins / analysis
  • Neoplasm Proteins / metabolism*
  • Nitrogen Isotopes / metabolism
  • Oligonucleotide Array Sequence Analysis
  • Proteomics / methods*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Reproducibility of Results
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Spirulina / chemistry

Substances

  • Adenomatous Polyposis Coli Protein
  • Neoplasm Proteins
  • Nitrogen Isotopes
  • RNA, Messenger