Anticonvulsant hypersensitivity syndrome (AHS) is a rare and potentially fatal reaction that develops in susceptible patients following exposure to certain drugs, including aromatic anticonvulsants. Because of its ill-defined clinical picture and resemblance to other diseases, the diagnosis of AHS is often difficult and requires a safe and reliable diagnostic test. Other than systemic rechallenge, which is not always ethically permissible and has its own limitations, no reliable diagnostic test is available for this type of disorder. This systematic review attempts to evaluate the usefulness of the available in vitro tests in the diagnosis of AHS - namely, the lymphocyte transformation test (LTT) and the lymphocyte toxicity assay (LTA) - and to examine the different technical aspects of these tests that may contribute to their performance. We included studies in which aromatic anticonvulsant drugs were the likely causes of the hypersensitivity reaction and either the LTT or the LTA was used to aid the diagnosis of AHS. Analysis of original publications from 1950 to the last week of March 2009 and cited in PubMed, MEDLINE and EMBASE has revealed that there are numerous factors affecting the final result of the test, including the following: the timing of the test after exposure; the clinical manifestation of the reactions; the specific drug; and the test procedure and read-out system. In vitro diagnostic tests have the advantage over in vivo tests of being safe to use; however, in vitro tests for the diagnosis of AHS are not well standardized and their sensitivity and specificity are not yet determined. From the reviewed literature, the sensitivity of the LTT and the LTA seem to be around 70% and 90%, respectively, and the positive and negative predictive values of the tests in highly imputable cases are quite high. However, the lack of a gold-standard diagnostic test to prove drug culpability, along with the paucity of large-scale studies, precludes accurate determination of the epidemiological characteristics of these tests. It appears that without further understanding of the mechanisms underlying the pathophysiology of AHS, and how specific drugs and metabolites differentially affect these mechanisms, the development of more reliable tools for AHS diagnosis will be compromised. Consequently, in the absence of further research, the predictability of these tests will remain questionable and they are unlikely to be utilized on a large scale.