Objective: To investigate red blood cell rheology in a large intensive care unit population on admission, and to assess the possible influence of comorbidities on the rheology.
Design: : Prospective study.
Setting: Medico-surgical intensive care unit with 31 beds.
Subjects: All intensive care unit admissions during a 5-month period and 20 healthy volunteers.
Interventions: Blood sampling.
Measurements and main results: A total of 196 intensive care patients (160 without and 36 with sepsis) and 20 healthy volunteers were studied. Red blood cell rheology (deformability and aggregation) was assessed ex vivo using the laser-assisted optical rotational cell analyzer (LORCA; Mechatronics Instruments BV, AN Zwaag, Netherlands) within the first 24 hrs after intensive care unit admission. Red blood cell deformability was determined by the elongation index in relation to the shear stress (0.3 to 50 Pa) applied on the red blood cell membrane surface. Aggregation was assessed by the aggregation index. Septic patients were more likely to have anemia, coagulation abnormalities, and comorbidities than were nonseptic patients. Red blood cell deformability was significantly altered in septic compared to nonseptic patients and volunteers for the majority of shear stress rates studied. The aggregation index was greater in septic patients than in volunteers (67.9% [54.7-73.5] vs. 61.8% [58.2-68.4]; p < .05). Only sepsis and hematologic disease influenced the elongation index (both p < .01). Other comorbidities, like cancer, diabetes mellitus, cirrhosis, and terminal renal failure, had no effect on the elongation index. Aggregation index was related to the degree of organ failure (Sequential Organ Failure Assessment score), the red blood cell count, and fibrinogen concentrations.
Conclusions: Early alterations of red blood cell rheology are common in intensive care unit patients, especially in those with sepsis. Comorbidities (other than hematologic diseases) do not significantly influence these abnormalities. These alterations could contribute to the microcirculatory alterations observed in critically ill patients.