Purpose: In Hodgkin's lymphoma, constitutive activation of NF-kappaB promotes tumor cell survival and proliferation. The molecular chaperone heat shock protein 90 (HSP90) has immune regulatory activity and supports the activation of NF-kappaB in Hodgkin's lymphoma cells.
Experimental design: We analyzed the effect of HSP90 inhibition on viability and NF-kappaB activity in Hodgkin's lymphoma cells and the consequences for their recognition and killing through natural killer (NK) cells.
Results: The novel orally administrable HSP90 inhibitor BIIB021 (CNF2024) inhibited Hodgkin's lymphoma cell viability at low nanomolar concentrations in synergy with doxorubicin and gemcitabine. Annexin V/7-aminoactinomycin D binding assay revealed that BIIB021 selectively induced cell death in Hodgkin's lymphoma cells but not in lymphocytes from healthy individuals. We observed that BIIB021 inhibited the constitutive activity of NF-kappaB and this was independent of IkappaB mutations. Furthermore, we analyzed the effect of HSP90 inhibition on NK cell-mediated cytotoxicity. BIIB021 induced the expression of ligands for the activating NK cell receptor NKG2D on Hodgkin's lymphoma cells resulting in an increased susceptibility to NK cell-mediated killing. In a xenograft model of Hodgkin's lymphoma, HSP90 inhibition significantly delayed tumor growth.
Conclusions: HSP90 inhibition has direct antitumor activity in Hodgkin's lymphoma in vitro and in vivo. Moreover, HSP90 inhibition may sensitize Hodgkin's lymphoma cells for NK cell-mediated killing via up-regulation of ligands engaging activating NK cell receptors.