A realistic assessment of methods for extracting gene/protein interactions from free text

BMC Bioinformatics. 2009 Jul 28:10:233. doi: 10.1186/1471-2105-10-233.

Abstract

Background: The automated extraction of gene and/or protein interactions from the literature is one of the most important targets of biomedical text mining research. In this paper we present a realistic evaluation of gene/protein interaction mining relevant to potential non-specialist users. Hence we have specifically avoided methods that are complex to install or require reimplementation, and we coupled our chosen extraction methods with a state-of-the-art biomedical named entity tagger.

Results: Our results show: that performance across different evaluation corpora is extremely variable; that the use of tagged (as opposed to gold standard) gene and protein names has a significant impact on performance, with a drop in F-score of over 20 percentage points being commonplace; and that a simple keyword-based benchmark algorithm when coupled with a named entity tagger outperforms two of the tools most widely used to extract gene/protein interactions.

Conclusion: In terms of availability, ease of use and performance, the potential non-specialist user community interested in automatically extracting gene and/or protein interactions from free text is poorly served by current tools and systems. The public release of extraction tools that are easy to install and use, and that achieve state-of-art levels of performance should be treated as a high priority by the biomedical text mining community.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology / methods*
  • Databases, Genetic
  • Databases, Protein
  • Genes*
  • Protein Interaction Mapping / methods
  • Proteins / chemistry*
  • Proteins / metabolism

Substances

  • Proteins