The emergence of massively parallel DNA sequencing platforms has made resequencing an affordable approach to study genetic variation. However, the cost of whole genome resequencing remains too high to apply to large numbers of human samples. Genomic partitioning methods allow enrichment for regions of interest at a scale that is matched to the throughput of the new sequencing platforms. We review general categories of methods for genomic partitioning including multiplex PCR, capture-by-circularization, and capture-by-hybridization. Parameters that are relevant to the performance of any given method include multiplexity, specificity, uniformity, input requirements, scalability, and cost. The successful development of genomic partitioning strategies will be key to taking full advantage of massively parallel sequencing, at least until resequencing of complete mammalian genomes becomes widely affordable.