Simvastatin alleviates myocardial contractile dysfunction and lethal ischemic injury in rat heart independent of cholesterol-lowering effects

Physiol Res. 2009;58(3):449-454. doi: 10.33549/physiolres.931751.

Abstract

Statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are most frequently used drugs in the prevention of coronary artery disease due to their cholesterol-lowering activity. However, it is not exactly known whether these effects of statins or those independent of cholesterol decrease account for the protection against myocardial ischemia-reperfusion (I/R) injury. In this study, we investigated the effect of 5-day treatment with simvastatin (10 mg/kg) in Langendorff-perfused hearts of healthy control (C) and diabetic-hypercholesterolemic (D-H; streptozotocin + high fat-cholesterol diet, 5 days) rats subjected to 30-min global ischemia followed by 40-min reperfusion for the examination of postischemic contractile dysfunction and reperfusion-induced ventricular arrhythmias or to 30-min (left anterior descending) coronary artery occlusion and 2-h reperfusion for the infarct size determination (IS; tetrazolium staining). Postischemic recovery of left ventricular developed pressure (LVDP) in animals with D-H was improved by simvastatin therapy (62.7+/-18.2 % of preischemic values vs. 30.3+/-5.7 % in the untreated D-H; P<0.05), similar to the values in the simvastatin-treated C group, which were 2.5-fold higher than those in the untreated C group. No ventricular fibrillation occurred in the simvastatin-treated C and D-H animals during reperfusion. Likewise, simvastatin shortened the duration of ventricular tachycardia (10.2+/-8.1 s and 57.8+/-29.3 s in C and D-H vs. 143.6+/-28.6 s and 159.3+/-44.3 s in untreated C and D-H, respectively, both P<0.05). The decreased arrhythmogenesis in the simvastatin-treated groups correlated with the limitation of IS (in % of risk area) by 66 % and 62 % in C and D-H groups, respectively. However, simvastatin treatment decreased plasma cholesterol levels neither in the D-H animals nor in C. The results indicate that other effects of statins (independent of cholesterol lowering) are involved in the improvement of contractile recovery and attenuation of lethal I/R injury in both, healthy and diseased individuals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arrhythmias, Cardiac / etiology
  • Arrhythmias, Cardiac / pathology
  • Arrhythmias, Cardiac / physiopathology
  • Arrhythmias, Cardiac / prevention & control*
  • Cardiotonic Agents / pharmacology*
  • Cholesterol / blood
  • Diabetes Mellitus, Experimental / complications
  • Diabetes Mellitus, Experimental / drug therapy*
  • Diabetes Mellitus, Experimental / pathology
  • Diabetes Mellitus, Experimental / physiopathology
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / pharmacology
  • Hypercholesterolemia / complications
  • Hypercholesterolemia / drug therapy*
  • Hypercholesterolemia / pathology
  • Hypercholesterolemia / physiopathology
  • Male
  • Myocardial Contraction / drug effects*
  • Myocardial Infarction / etiology
  • Myocardial Infarction / pathology
  • Myocardial Infarction / physiopathology
  • Myocardial Infarction / prevention & control*
  • Myocardial Ischemia / etiology
  • Myocardial Ischemia / pathology
  • Myocardial Ischemia / physiopathology
  • Myocardial Ischemia / prevention & control*
  • Myocardium / pathology*
  • Perfusion
  • Rats
  • Rats, Wistar
  • Recovery of Function
  • Simvastatin / pharmacology*
  • Ventricular Pressure / drug effects

Substances

  • Cardiotonic Agents
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors
  • Cholesterol
  • Simvastatin