HIV-1 infection induces a progressive disruption of the B cell compartment impairing long-term immune responses to routine immunizations. Depletion of specific memory B cell pools occurs during the 1st stages of the infection and cannot be reestablished by antiretroviral treatment. We reasoned that an early control of viral replication through treatment could preserve the normal development of the memory B cell compartment and responses to routine childhood vaccines. Accordingly, we evaluated the effects of different highly-active antiretroviral therapy (HAART) schedules in 70 HIV-1 vertically-infected pediatric subjects by B cell phenotypic analyses, antigen-specific B cell enzyme-linked immunosorbent spot (ELISpot) and ELISA for common vaccination and HIV-1 antigens. Initiation of HAART within the 1st year of life permits the normal development and maintenance of the memory B cell compartment. On the contrary, memory B cells from patients treated later in time are remarkably reduced and their function is compromised regardless of viral control. A cause for concern is that both late-treated HIV-1 controllers and noncontrollers loose protective antibody titers against common vaccination antigens. Timing of HAART initiation is the major factor predicting the longevity of B cell responses in vaccinated HIV-1-infected children.