Diffusion-weighted imaging (DWI) in MR mammography (MRM): clinical comparison of echo planar imaging (EPI) and half-Fourier single-shot turbo spin echo (HASTE) diffusion techniques

Eur Radiol. 2009 Jul;19(7):1612-20. doi: 10.1007/s00330-009-1326-5. Epub 2009 Mar 14.

Abstract

Diffusion-weighted imaging (DWI) techniques have shown potential to differentiate between benign and malignant neoplasms. However, the diagnostic significance of using DWI under routine conditions remains unclear. This study investigated the use of echo planar imaging (EPI) and half-Fourier acquired single-shot turbo spin echo (HASTE)-DWI with respect to the three parameters: lesion visibility, apparent diffusion coefficient (ADC) measurements, and size estimation. Following MRM (1.5 T), EPI- and HASTE-DWI were applied in 65 patients. Lesion visibility on DWI was compared with lesion visibility on subtracted contrast-enhanced T1w images (CE-T1w). Statistical tests were applied to diameter, visibility, and ADC value measurements. Seventy-four lesions were identified. ADC value measurements did not differ significantly between the two DWI sequences. The sensitivity and specificity of routine diagnostics (97.4% and 85.7%) were superior to EPI-DWI (87.2% and 82.9%) and HASTE-DWI (76.9% and 88.6%). Selecting only nonmass lesions, DWI did not prove to be of diagnostic value. Lesion demarcation by DWI was significantly lower compared with that by CE-T1w, with EPI-DWI showing the better performance (p < 0.001). No significant differences were found for size measurements between CE-T1w and DWI. Although clearly inferior compared with CE-T1w imaging, both DWI techniques are applicable for lesion assessment and size measurements.

Publication types

  • Comparative Study
  • Evaluation Study

MeSH terms

  • Breast / pathology*
  • Breast Neoplasms / pathology*
  • Diffusion Magnetic Resonance Imaging / methods*
  • Echo-Planar Imaging / methods*
  • Female
  • Fourier Analysis
  • Humans
  • Middle Aged
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Spin Labels

Substances

  • Spin Labels