Preimplantation genetic diagnosis (PGD), used in clinical practice, is offered to couples that may suffer from a monogenetic disorder, chromosome aneuploidy, or X-linked disease. However, blastomere biopsy, as an indispensable manipulation during the PGD procedure has not been assessed for its long term health implications. Using a mouse model, we investigated the effect of blastomere biopsy of in vitro cultured four-cell embryos on preimplantation development efficiency, postnatal growth, and physiological and behavioral activity compared with control, non-biopsied embryos. The mice generated after blastomere biopsy showed weight increase and some memory decline compared with the control group. Further protein expression profiles in adult brains were analyzed by a proteomics approach. A total of 36 proteins were identified with significant differences between the biopsied and control groups, and the alterations in expression of most of these proteins have been associated with neurodegenerative diseases. Furthermore hypomyelination of the nerve fibers was observed in the brains of mice in the biopsied group. This study suggested that the nervous system may be sensitive to blastomere biopsy procedures and indicated an increased relative risk of neurodegenerative disorders in the offspring generated following blastomere biopsy. Thus, more studies should be performed to address the possible adverse effects of blastomere biopsy on the development of offspring, and the overall safety of PGD technology should be more rigorously assessed.