Previous contributions to both the research and open source software communities detailed a generalization of a fast scalar field fitting technique for cubic B-splines based on the work originally proposed by Lee . One advantage of our proposed generalized B-spline fitting approach is its immediate application to a class of nonrigid registration techniques frequently employed in medical image analysis. Specifically, these registration techniques fall under the rubric of free-form deformation (FFD) approaches in which the object to be registered is embedded within a B-spline object. The deformation of the B-spline object describes the transformation of the image registration solution. Representative of this class of techniques, and often cited within the relevant community, is the formulation of Rueckert who employed cubic splines with normalized mutual information to study breast deformation. Similar techniques from various groups provided incremental novelty in the form of disparate explicit regularization terms, as well as the employment of various image metrics and tailored optimization methods. For several algorithms, the underlying gradient-based optimization retained the essential characteristics of Rueckert's original contribution. The contribution which we provide in this paper is two-fold: 1) the observation that the generic FFD framework is intrinsically susceptible to problematic energy topographies and 2) that the standard gradient used in FFD image registration can be modified to a well-understood preconditioned form which substantially improves performance. This is demonstrated with theoretical discussion and comparative evaluation experimentation.