We develop expressions for the power to detect associations between parental genotypes and offspring phenotypes for quantitative traits. Three different "indirect" experimental designs are considered: full-sib, half-sib, and full-sib-half-sib families. We compare the power of these designs to detect genotype-phenotype associations relative to the common, "direct," approach of genotyping and phenotyping the same individuals. When heritability is low, the indirect designs can outperform the direct method. However, the extra power comes at a cost due to an increased phenotyping effort. By developing expressions for optimal experimental designs given the cost of phenotyping relative to genotyping, we show how the extra costs associated with phenotyping a large number of individuals will influence experimental design decisions. Our results suggest that indirect association studies can be a powerful means of detecting allelic associations in outbred populations of species for which genotyping and phenotyping the same individuals is impractical and for life history and behavioral traits that are heavily influenced by environmental variance and therefore best measured on groups of individuals. Indirect association studies are likely to be favored only on purely economical grounds, however, when phenotyping is substantially less expensive than genotyping. A web-based application implementing our expressions has been developed to aid in the design of indirect association studies.