A small number of clonal lineages dominates the global population structure of methicillin-resistant Staphylococcus aureus (MRSA), resulting in the concept that MRSA has emerged on a few occasions after penicillinase-stable beta-lactam antibiotics were introduced to clinical practice, followed by intercontinental spread of individual clones. We investigated the evolutionary history of an MRSA clone (ST5) by mutation discovery at 108 loci (46 kb) within a global collection of 135 isolates. The SNPs that were ascertained define a radial phylogenetic structure within ST5 consisting of at least 5 chains of mutational steps that define geographically associated clades. These clades are not concordant with previously described groupings based on staphylococcal protein A gene (spa) typing. By mapping the number of independent imports of the staphylococcal cassette chromosome methicillin-resistance island, we also show that import has occurred on at least 23 occasions within this single sequence type and that the progeny of such recombinant strains usually are distributed locally rather than globally. These results provide strong evidence that geographical spread of MRSA over long distances and across cultural borders is a rare event compared with the frequency with which the staphylococcal cassette chromosome island has been imported.