Skeletal muscle is formed during development by the progressive specification, proliferation, migration, and fusion of myoblasts to form terminally differentiated, contractile, highly patterned myofibers. Skeletal muscle is repaired or replaced postnatally by a similar process, involving a resident myogenic stem cell population referred to as satellite cells. In both cases, the activity of the myogenic precursor cells in question is regulated by local signals from the environment, frequently involving other, non-muscle cell types. However, while the majority of studies on muscle development were done in the context of the whole embryo, much of the current work on muscle satellite cells has been done in vitro, or on satellite cell-derived cell lines. While significant practical reasons for these approaches exist, it is almost certain that important influences from the context of the injured and regenerating muscle are lost, while potential tissue culture artifacts are introduced. This review will briefly address extracellular influences on satellite cells in vivo and in vitro that would be expected to impinge on their activity.
(c) 2008 Wiley-Liss, Inc.