Magnetic endohedral transition-metal-doped semiconducting-nanoclusters

Chemistry. 2008;14(28):8547-54. doi: 10.1002/chem.200800376.

Abstract

Endohedral first-row transition-metal-doped TM@Zn(i)S(i) nanoclusters, in which TM stands for the first-row transition-metals from Sc to Zn, and i=12, 16, have been characterized. In these structures the dopant metals are trapped inside spheroidal hollow semiconducting nanoclusters. It is observed that some of the transition metals are trapped in the center of mass of the cluster, whereas others are found to be displaced from that center, leading to structures in which the transition metals display a complex dynamical behavior upon encapsulation. This fact was confirmed by quantum molecular dynamics calculations, which further confirmed the thermal stability of endohedral compounds. In the endohedrally-doped nanoclusters in which the transition-metal atom sits on the center of mass, the host hollow cluster structure remains undistorted after dopant encapsulation. Conversely, if the encapsulated transition-metal atom is displaced from the center of mass, the host hollow cluster structure suffers a very tiny distortion. Additionally, it is found that there is negligible charge transfer between the dopant transition-metal atom and its hollow cluster host and, after encapsulation, the spin densities remain localized on the transition-metal atom. This allows for the atomic-like behavior of the trapped transition-metal atom, which gives rise to their atomic-like magnetic properties. The encapsulation free energies are negative, suggesting that these compounds are thermodynamically stable.