Cytolytic T cell-centric active specific and adoptive immunotherapeutic approaches might benefit from the simultaneous engagement of CD4(+) T cells. Considering the difficulties in simultaneously engaging CD4(+) and CD8(+) T cells in tumor immunotherapy, especially in an Ag-specific manner, redirecting CD4(+) T cells to MHC class I-restricted epitopes through engineered expression of MHC class I-restricted epitope-specific TCRs in CD4(+) T cells has emerged as a strategic consideration. Such TCR-engineered CD4(+) T cells have been shown to be capable of synthesizing cytokines as well as lysing target cells. We have conducted a critical examination of functional characteristics of CD4(+) T cells engineered to express the alpha- and beta-chains of a high functional avidity TCR specific for the melanoma epitope, MART-1(27-35), as a prototypic human tumor Ag system. We found that unpolarized CD4(+)CD25(-) T cells engineered to express the MART-1(27-35) TCR selectively synthesize Th1 cytokines and exhibit a potent Ag-specific lytic granule exocytosis-mediated cytolytic effector function of comparable efficacy to that of CD8(+) CTL. Such TCR engineered CD4(+) T cells, therefore, might be useful in clinical immunotherapy.