The comparative effects of decapitation and defoliation on the senescence-induced inactivation of photosynthetic activity in primary leaves of bean plants were investigated. Decapitation was performed during different phases of bean plant ontogenesis, immediately after the appearance of the 1st, 2nd, 3rd and 4th composite leaf. In addition, we examined a variant with primary leaves and stem with an apical bud, but without composite leaves, i.e. defoliated plants. Analyses of chlorophyll fluorescence, millisecond delayed fluorescence and absorption at 830nm in primary leaves were undertaken to investigate the alterations in photosystems II and I electron transport during the decapitation-induced delayed senescence in the non-detached leaves. Analysis of the OKJIP transients using the JIP-test (see [Strasser R, Srivastava A, Tsimilli-Michael M. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee, editors. Chlorophyll a fluorescence: a signature of photosynthesis. The Netherlands: Kluwer Academic Publishers, 2004; pp. 321-362]) showed an increase in several biophysical parameters of photosystem II in decapitated plants, specifically, the density of active reaction centers on a chlorophyll basis, the yields of trapping and electron transport, and the performance index. We also observed a decrease in the absorbed light energy per reaction center. Such a decrease in light absorption could be a result of the photosystem II down regulation that appeared as an increase in Q(B)-non-reducing photosystem II centers. The effect was identical when all leaves except the primary leaves were removed. The variant with a preserved apical bud, the defoliated plant, showed values similar to those of decapitated plants with primary leaves only. The changes in the induction curves of the delayed fluorescence also indicated an acceleration of electron transport beyond photosystem II in the decapitated and in defoliated plants. In these plants, the photosystem I-driven electron transport was accelerated, and the size of the plastoquinone pool was enhanced. It was established that decapitation can retard the senescence of primary leaves, can expand leaf life span and can cause activation of both photosystems I and II electron transport. The decapitation procedure shows similarities to the process of defoliation. The overcompensation effect that is developed after defoliation could initially be manifested as an acceleration of the linear photosynthetic electron flow in the rest of the leaves.