We tested the hypothesis that older adults, relative to younger adults, would be more prone to critical reductions in cerebral blood flow and oxygenation upon standing during passive heat stress. Six older (70+/-4 years, mean+/-s.d.) and six younger males (29+/-4 years) were heated (oesophageal temperature raised 0.5 degrees C) in a water-perfused suit. Blood flow velocity in the middle cerebral artery (MCAv), cerebral oxygenation, mean arterial pressure (MAP) and end-tidal partial pressure of carbon dioxide (PET,CO2) were measured continuously before and during 3 min standing in each thermal state. At supine normothermic baseline, MCAv was 47% lower in older participants (P<0.001), whilst MAP and cerebral oxygenation were similar between groups (P>0.05). Heating lowered the supine MAP more in younger adults, and elevated heart rate only in this group. Upon initial standing in normothermia, older participants had a greater drop in MCAv (P<0.05 versus young), a lesser drop in MAP (approximately 24 and approximately 42% in older and younger participants, respectively), but slower recovery of MAP (27.3+/-6.8 versus 18.6+/-4.7 s, mean+/-s.d., P=0.004); heating did not exacerbate any postural responses in either age group. During the last minute of standing, MCAv and PET,CO2 were lower in older participants, though age differences were not evident in cerebral oxygenation (normothermic or heated). Thus, independent of heat stress, in addition to lower resting MCAv, there are further age-related reductions in MCAv and slower corrections of MAP following standing. However, these asymptomatic changes seem to represent a physiologically acceptable insult which can be well tolerated in otherwise healthy older participants even during heat stress.