Exploring epistasis in candidate genes for rheumatoid arthritis

BMC Proc. 2007;1 Suppl 1(Suppl 1):S70. doi: 10.1186/1753-6561-1-s1-s70. Epub 2007 Dec 18.

Abstract

The identification of susceptibility genes for common, chronic disease presents great challenges. The development of novel statistical and computational methodologies to help identify these genes is an area of great necessity. Much research is ongoing and the Genetic Analysis Workshop (GAW) is a venue for the dissemination and comparison of many of these methods. GAW15 included real data sets to look for disease susceptibility genes for rheumatoid arthritis (RA). RA is a complex, chronic inflammatory disease with several replicated disease genes, but much of the genetic variation in the phenotype remains unexplained. We applied two computational methods, namely multifactor dimensionality reduction (MDR) and grammatical evolution neural networks (GENN), to three data sets from GAW15. While these analytic methods were applied with the intention of detecting of multilocus models of association, both methods identified a strong single locus effect of a single-nucleotide polymorphism (SNP) in PTPN22 that is significantly associated with RA. This SNP has previously been associated with RA in several other published studies. These results demonstrate that both MDR and GENN are capable of identifying a single-locus main effect, in addition to multilocus models of association. This is the first published comparison of the two methods. Because GENN employs an evolutionary computation search strategy in comparison to the exhaustive search strategy of MDR, it is encouraging that the two methods produced similar results. This comparison should be extended in future studies with both simulated and real data.