Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants

Ecol Lett. 2008 Aug;11(8):793-801. doi: 10.1111/j.1461-0248.2008.01185.x.

Abstract

Using a database of 2510 measurements from 287 species, we assessed whether general relationships exist between mass-based dark respiration rate and nitrogen concentration for stems and roots, and if they do, whether they are similar to those for leaves. The results demonstrate strong respiration-nitrogen scaling relationships for all observations and for data averaged by species; for roots, stems and leaves examined separately; and for life-forms (woody, herbaceous plants) and phylogenetic groups (angiosperms, gymnosperms) considered separately. No consistent differences in the slopes of these log-log scaling relations were observed among organs or among plant groups, but respiration rates at any common nitrogen concentration were consistently lower on average in leaves than in stems or roots, indicating that organ-specific relationships should be used in models that simulate respiration based on tissue nitrogen concentrations. The results demonstrate both common and divergent aspects of tissue-level respiration-nitrogen scaling for leaves, stems and roots across higher land plants, which are important in their own right and for their utility in modelling carbon fluxes at local to global scales.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Carbon / metabolism
  • Models, Biological
  • Nitrogen / metabolism*
  • Oxygen Consumption / physiology*
  • Phylogeny
  • Plant Leaves / metabolism*
  • Plant Roots / metabolism*
  • Plant Stems / metabolism*
  • Plants / metabolism*

Substances

  • Carbon
  • Nitrogen