Introduction: 3D echocardiography allows imaging and analysis of cardiovascular structures as they move in time and space, thus creating possibility for creation of 4D datasets (3D + time). Intracardiac echocardiography (ICE) further broadens the spectrum of echocardiographic techniques by allowing detailed imaging of intracardiac anatomy with 3D reconstructions. The paper reviews the current status of development of 3D and 4D echocardiography in electrophysiology. In ablation area, 3D echocardiography can enhance the performance of catheter ablation for complex arrhythmias such as atrial fibrillation. Currently, several strategies to obtain 3D reconstructions from ICE are available. One involves combination with electroanatomical mapping system; others create reconstruction from standard phased-array or single-element ICE catheter using special rotational or pull-back devices. Secondly, 3D echocardiography may be used for precise assessment of cardiac dyssynchrony before cardiac resynchronization therapy. Its reliable detection is expected to minimize number of non-responders to this treatment and optimize left ventricular lead positioning to get maximum hemodynamic benefit.
Conclusion: The main potential benefit of 3D and 4D echocardiography in electrophysiology lie in real-time guidance of complex ablation procedures and precise assessment of cardiac dyssynchrony.