Wnt signaling enhances cell proliferation and the maintenance of hematopoietic cells. In contrast, cytotoxic ligand Apo2L/TRAIL induces the apoptosis of various transformed cells. We observed that co-culture of human pre-B leukemia cells KM3 and REH with Wnt1- or Wnt3a-producing rat embryonic fibroblasts efficiently suppressed Apo2L/TRAIL-induced apoptosis of the lymphoid cells. This suppression occurs at the early stages of the Apo2L/TRAIL apoptotic cascade and, interestingly, the activation of the Wnt pathway alone in human leukemia cells is not sufficient for their full anti-apoptotic protection. We hypothesize that a stimulus emanating specifically from Wnt1- or Wnt3a-expressing rat fibroblasts is responsible for the observed resistance to Apo2L/TRAIL. This anti-apoptotic signaling was significantly hampered by the inhibition of the MEK1/ERK1/2 or NFkappaB pathways in KM3 and REH cells. Our results imply that paracrine Wnt-related signals could be important for the survival of pre-B cell-derived malignancies.