Cancers typically harbour several mutant forms of key cellular genes that contribute to its complex phenotype. Our lab has previously identified gain-of-function mutations in some of the receptor tyrosine kinases such as c-Met in lung cancer. In order to investigate the mutant gene in the context of a whole organism, the current choice of in vivo model is limited to the mouse. To rapidly screen the functional aspects of mutant forms of c-Met detected in lung cancer, we used the nematode C. elegans as the model organism. Transgenic worms were generated that harbour wild type or the frequently seen mutant forms of c-Met in lung cancer (c-MetR988C and c-MetT1010I). Expression of the mutant human c-Met forms in C. elegans consistently resulted in significantly low fecundity and abnormal vulval development characterized by hyperplasia. Interestingly, exposure of c-Met mutant transgenic worms to nicotine resulted in enhanced abnormal vulval development, fecundity and locomotion. Our studies provide first evidence that human c-Met mutations can be studied in C. elegans, and that carcinogens can enhance mutant c-Met function expressed in C. elegans transgenic animals. We therefore propose the use of C. elegans as a model to rapidly assess the role of cancer specific gene mutations in the context of a whole organism.