An enzyme-linked immunosorbent assay for the determination of dioxins in contaminated sediment and soil samples

Chemosphere. 2008 May;72(1):95-103. doi: 10.1016/j.chemosphere.2008.01.012. Epub 2008 Mar 4.

Abstract

A 96-microwell enzyme-linked immunosorbent assay (ELISA) method was evaluated to determine PCDDs/PCDFs in sediment and soil samples from an EPA Superfund site. Samples were prepared and analyzed by both the ELISA and a gas chromatography/high resolution mass spectrometry (GC/HRMS) method. Comparable method precision, accuracy, and detection level (8 ng kg(-1)) were achieved by the ELISA method with respect to GC/HRMS. However, the extraction and cleanup method developed for the ELISA requires refinement for the soil type that yielded a waxy residue after sample processing. Four types of statistical analyses (Pearson correlation coefficient, paired t-test, nonparametric tests, and McNemar's test of association) were performed to determine whether the two methods produced statistically different results. The log-transformed ELISA-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin values and log-transformed GC/HRMS-derived TEQ values were significantly correlated (r=0.79) at the 0.05 level. The median difference in values between ELISA and GC/HRMS was not significant at the 0.05 level. Low false negative and false positive rates (<10%) were observed for the ELISA when compared to the GC/HRMS at 1,000 ng TEQ kg(-1). The findings suggest that immunochemical technology could be a complementary monitoring tool for determining concentrations at the 1,000 ng TEQ kg(-1) action level for contaminated sediment and soil. The ELISA could also be used in an analytical triage approach to screen and rank samples prior to instrumental analysis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Dioxins / analysis*
  • Enzyme-Linked Immunosorbent Assay / methods*
  • Gas Chromatography-Mass Spectrometry
  • Geologic Sediments / chemistry*
  • Soil Pollutants / analysis*

Substances

  • Dioxins
  • Soil Pollutants