Discusses the inclusion of anatomical constraints and anisotropy in static Electrical Impedance Tomography (EIT) using a two-step approach to EIT. In the first step, the boundaries between regions of different conductivities are anatomically constrained using Magnetic Resonance Imaging (MRI) data. In the second step, the conductivity values in different regions are determined. Anisotropic conductivity regions are included to allow better modeling of the muscle regions (e.g., skeletal muscle) which exhibit a greater conductivity in the direction parallel to the muscle fiber. This two-step approach is used to reconstruct the conductivity profile of a canine torso, illustrating its potential application in extracting conductivity values for bioelectric modeling.