Background and objectives: D-dimer is a hemostasis marker that reflects ongoing fibrin formation and degradation. There is significant inter-individual and inter-population variability in D-dimer concentration, but whether genetic factors underlie these differences is largely unknown. We hypothesized that common coagulation gene variants contribute to differences in circulating D-dimer concentration.
Methods: The setting was European-American (EA; n = 1858) and African-American (AA; n = 327) unrelated older adults from the Cardiovascular Health Study (CHS), in which we genotyped SNPs in 42 genes related to blood coagulation and fibrinolysis.
Results: Several fibrinogen gene polymorphisms, including the Thr312Ala Aalpha chain variant and the FGG-10034 C/T variant, were associated with approximately 20% higher plasma D-dimer levels in EA (false discovery rate < 5% for covariate-adjusted model). There was also some evidence that a Pro41Leu variant of the PLAU gene encoding urinary plasminogen activator and non-coding polymorphism of the plasminogen activator inhibitor type 1 gene (SERPINE1) were associated with higher plasma D-dimer in EA. There were no significant associations between the studied coagulation or fibrinolysis gene SNPs and plasma D-dimer levels in the smaller AA sample. However, each standard deviation increase in European ancestry assessed by ancestry-informative gene markers was associated with approximately 10% lower mean D-dimer levels in AA.
Conclusions: Together, common coagulation/fibrinolysis gene SNPs explained only approximately 2% of the variance in plasma D-dimer levels in EA. These findings suggest that the association of D-dimer with risk of vascular outcomes may be mediated largely by environmental factors, other genes, and/or genetic interactions.