Herpes simplex virus type 1 thymidine kinase (HSV1-TK) is a widely used reporter for in vivo noninvasive monitoring of therapeutic gene expression, immune cell trafficking, and protein-protein interactions in various animal systems. However, the stability of HSV1-TK limits its application in studies that require rapid turnover of the reporter. The purpose of this study was to create a destabilized HSV1-TK as a transcription reporter that allows for dynamic studies of short-time-scale gene expression events.
Methods: A destabilized HSV1-TK was created by targeting inactivating mutations in the nuclear localization signal of HSV1-TK and fusing the degradation domain of mouse ornithine decarboxylase to the C-terminal end. The protein or enzyme stability was determined by Western blot analysis and HSV1-TK enzyme activity assay, respectively. The proteasome inhibition assay was used to test whether the rapid turnover of the destabilized HSV1-TK was processed in a 26S proteasome-dependent manner. The suitability of destabilized HSV1-TK as a transcription reporter was tested by linking it to a tetracycline-turnoff-expressing system. The dynamic transcriptional events mediating a series of doxycycline inductions were monitored by destabilized HSV1-TK or by native HSV1-TK and were determined by an in vitro HSV1-TK enzyme activity assay and in vivo small-animal PET imaging.
Results: The destabilized HSV1-TK, unlike wild-type HSV1-TK, was unstable in the presence of cycloheximide and had a short half-life of protein and enzyme activity. The rapid turnover of the destabilized HSV1-TK was processed in a 26S proteasome-dependent manner. Furthermore, the destabilized HSV1-TK had low cytotoxicity when it was highly expressed in living cells. The results of dynamic gene expression studies in vitro and in vivo showed that the destabilized HSV1-TK is an optimal reporter for monitoring short-time-scale dynamic transcriptional events mediating a series of doxycycline inductions, whereas the wild-type HSV1-TK is not optimal to achieve this purpose.
Conclusion: The use of destabilized HSV1-TK as a transcription reporter together with a molecular probe, which has a short physical and biologic half-life, allows more direct monitoring of transcription induction and easier monitoring of its coincidence with other biochemical changes.