Tissue prostaglandin levels are determined by both biosynthesis and catabolism. The current studies report the expression and localization of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a key enzyme in prostaglandin catabolism in the kidneys. We also investigated potential interactions between 15-PGDH and cyclooxygenase (COX), a key enzyme in prostaglandin biosynthesis. Both 15-PGDH mRNA and protein levels were significantly higher in kidney cortex than in papilla, which is opposite to the expression pattern of COX-2. In situ hybridization indicated that 15-PGDH mRNA was mainly localized to the tubular epithelial cells in kidney cortex and outer medulla but not in the glomerulus or papilla. Dual immunofluorescent staining indicated that 15-PGDH was expressed in the proximal tubule, cortical, and outer medullary thick ascending limb and collecting duct but not in the macula densa or papilla. 15-PGDH levels were significantly lower in a macula densa cell line (MMDD1) than in a proximal tubule cell line. Although a high-salt diet decreased COX-2 expression in macula densa, it increased macula densa 15-PGDH expression in both mouse and rat kidneys. In MMDD1 cells, a COX-2 inhibitor increased 15-PGDH, whereas a COX-1 inhibitor had no effect. Furthermore, intense 15-PGDH immunofluorescent staining was found in both macula densa and glomerulus in COX-2 knockout mice. The intrarenal distribution of 15-PGDH and its interactions with COX-2 suggest that differential regulation of COX-2 and 15-PGDH may play an important role in determining levels of prostaglandins involved in regulation of salt, volume, and blood pressure homeostasis.