In the present study, we demonstrate a direct role for d-aspartate in regulating hippocampal synaptic plasticity. These evidences were obtained using two different experimental strategies which enabled a non-physiological increase of endogenous d-aspartate levels in the mouse hippocampus: a genetic approach based on the targeted deletion of d-aspartate oxidase gene and another based on the oral administration of d-aspartate. Overall, our results indicate that increased d-aspartate content does not affect basal properties of synaptic transmission but enhances long-term potentiation in hippocampal slices from both genetic and pharmacological animal models. Besides electrophysiological data, behavioral analysis suggests that altered levels of d-aspartate in the hippocampus do not perturb basal spatial learning and memory abilities, but may selectively interfere with the dynamic NMDAR-dependent processes underlying cognitive flexibility.